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Section 1 is a brief introduction. Section 2 contains the basic definitions of 
quasimanuals, weights, and operational logics. The linear space ~/C of all weights 
on a quasimanual zd is introduced and given a norm. ~/r with this norm is seen 
to be a Banach space. The subspace o//. of ~r generated by the positive cone of 
og/. is given the base norm and is also shown to be an Archimedian ordered 
Banach space with an additive norm. In Section 3 normal linear functionals on 
Y'* are defined in analogy with normal linear functionals on w* algebras. The 
space Y" is shown to be the set of normal functionals on ~* and we show ~" to 
be the unique partially ordered Banach space with a closed generating cone 
which is predual to T'*. Next, weakly compact subsets of og/. are characterized 
in terms of eventwise convergence. This is the Hahn-Vitali-Saks theorem of 
classical measure theory in this noncommutative setting; several weak compact- 
ness results are drawn from this and compared with their classical counterparts. 
Section 4 introduces the ultraweak topology for 7/'* in analogy with the same 
for the trace class operators on Hilbert space. Here the condition for a compact 
base for the cone of ~ is examined and shown to be a poor and unnecessary 
hypothesis in many circumstances. Many connections with the existent literature 
are made and throughout the paper there are many examples and open questions. 

1. I N T R O D U C T I O N  

At the 25 e Cours de perfectionnement de l'Association Vaudoise des 
Chercheurs en Physique held in Montana, Switzerland in March 1983, 
Randall and Foulis presented a paper entitled "A mathematical language 
for quantum physics" (Randall and Foulis, 1983). This language takes into 
account the operational, realistic, probabilistic, and subjective approaches 
to quantum mechanics and is based, quite simply, on set theory. It is our 
purpose to describe the various Banach spaces which naturally arise in this 
theory. We need only the most elementary parts of the language developed 
in Randall and Foulis (1983) and these are introduced below. Very few 
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physical axioms are made about the quasimanuals defined and described 
there, as our purpose is to establish a number of elementary properties of 
these Banach spaces without extraneous physical assumptions. For example, 
no use is made of  the more refined notion of manual introduced by Foulis 
and Randall; we do not interpret the elements of a quantum logic as filters 
acting on states of a physical system; even the well-known orthomodular 
identity plays no explicit role here. As the reader will see, the mathematical 
conclusions which can be deduced in this simple setting are rather extensive. 
Considerable use will be made of weak topologies and ordered normed 
spaces, so we have adopted the general notation of Kelley and Namioka 
(1963) and refer the reader to this well-known work frequently. B ase-normed 
and order-unit-normed spaces are used extensively, so Alfsen's monograph 
(1971) is also referred to very often. Some proofs are perhaps a bit more 
complete than necessary but we felt this more instructive than disseminating 
a road map through several very different functional analysis texts. 

2. BASIC DEFINITIONS AND BANACH SPACES OF WEIGHTS 

Let X be a nonempty set and let ~/ be a nonempty collection of 
nonempty subsets of X. The collection ~l/ is called a quasimanual on X 
when X = [ . J z ~  E. The set X is called the set of outcomes for ~ / a n d  each 
E in ~r is called an operation. If  A c E ~ ~ / then  A is called an event and 
the set of  all events for ~r is denoted ~(A). We may think of  the operations 
as experiments performed on a physical system, the outcomes are simply 
our observations, and the quasimanual is our given catalog of experiments. 
If  A and B are disjoint events and A u B c E c ~r for some operation E, 
then we say A and B are orthogonat and we write A_L B. If  A 3_B and 
A u B = E 6 ~ ,  then we say A and B are operational complements; this we 
denote as A oc B. We now introduce a partial order and equivalence relation 
on ~(~r whose interpretations are, respectively, implication and logical 
equivalence. Suppose A, B, and C are events with A oc C and B oc C (i.e., 
A and B share a common complement C) ;  we call A and B operationally 
perspective and write A op B. If  there exists a finite sequence of events 
Do, D 1 , . . . ,  Dn with A = Do, B = Dn, and either Di-1 ~ Di or D~_I op Dg for 
i = 1, 2 , . . . ,  n, then we say A implies B and we write A -< B. Note that A -< A, 
and A--- B and B -< C implies A-< C. If  we have events A and B such that 
A -< B and B -< A then we say that A and B are logically equivalent and we 
write A-= B. This equivalence relation partitions ~(~/) into disjoint classes 
called operational propositions: specifically, if A~  ~(~r we write p ( A ) =  
{B ~ ~(~r A ~ B} and call p(A)  the operational proposition corresponding 
to the event A. We designate with I I ( d ) ,  or simply II, the set of all 
operational propositions associated with the quasimanual II. The object 
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I I ( ~ )  is wha t  Foulis and Randal l  call an operational logic and it must  be  
emphas ized  here  that  it was constructed wi thout  any preconce ived  s tochast ic  
notions.  

We now int roduce stochast ic  notions on our  quas imanual .  Let to: X - ~  
[0, 1 ] c ~ ;  then to is called a weight on ~ p rov ided  for  each E in ~ ,  
Ex~Eto(x) = 1. Since the range of  to is conta ined  in [0, 1], this last sum is 
unders tood  to mean  unorde red  summat ion.  The  set o f  all weights on ~ is 
denoted  f~ and  when  f~ is nonempty ,  it is convex.  For  each event  A, we 
define to(A) = ~x~Ato(X). We shall abbrevia te  the nota t ion  ~xcA to ~A" Let 
~ x  designate all the real va lued functions on X. 

1. Definition. Let 7,//" c R x be the set o f  funct ions satisfying the follow- 
ing two criteria: (i) For  e a c h / z  E ~/g', sup{E~l/x(x)J: E ~ ~ }  = M r < c o ;  (ii) 
for  e a c h / z  ~ ~ there exists a constant  K~ such that  Y~/x(x) = K ,  for  each 
E in ~ .  Note:  Y~/x(x) in (ii) is an unorde red  sum of  real numbers  whose  
existence is guaran teed  by  (i) and K .  in (ii) depends  only on /z and  not  
on E in ~1. 

Since E x  is a part ial ly ordered vector  space and since ~ is clearly a 
l inear subspace ,  we can restrict the part ial  order  of  R x to 7g. When  the set 
f~ is n o n e m p t y  it is conta ined  in the posit ive cone c~ = {/z ~ ~ - 0} since 
for  each to ~12, M~ = K ~  = 1. 

2. Proposition. I f / ~  ~ ~ a n d / x  r 0, then there exist unique to ~ l~ and 
scalar a > 0 such that  ~z = ato [i.e., f~ is a base  for  ~ (Alfsen, 1971)]. 

Proof I f / z > 0 ,  there exist x o ~ X  and E ~ M  with xo~E and K , =  
Y e ~ ( x )  - ~Z(Xo) > 0. Clearly,  ~o = (1/K,)/ .~ ~ l~, o r / z  = K~to. I f /~  = ato =/3u 
for  posit ive scalars a , /3  and to, u E l-l, then for  each E c sr ~ .  1 = ato(E) = 
/3w(E) = fl-  1. Thus,  a =/3 and t~ = v. 

Let ~ represent  the algebraic dual' o f  ~/'. Each  event A 6 ~ ( ~ )  and,  
in part icular ,  each ou tcome x ~ X, generates  a unique posit ive l inear func- 
t ional  in ~v' as follows: For  A ~  ~(~/) ,  let fA: ~  be defined by  fA(/Z) = 
EA/-~(X) = / z ( A ) .  Since ~V'c ~x,  there is no ambigui ty  in this definit ion and 
clearly each fA is l inear and positiv6. The funct ional fA is called the frequency 
functional for  the event  A and we let ~(2ff) ,  or  s imply  ~ ,  designate {fa: A 
~(~r in ~k~". To emphas ize  the dual  roles of  the signed weights in ~V and 
the funct ionals  in ~ we will write ( # , f )  for  f ( t z )  when /~  ~ ~ and  f 6  ~r 
in pa r t i cu la r , /~ (A)  = fA( /Z )=  (IZ, fA~). If  x ~ X then {x} ~ ~(~r and for  sim- 
plicity we write f ,  as the funct ional  o f  {x}. I f  E, F ~ ~r then (/z, f~)  = (/z, fF) = 
K .  for  each  /z 6 ~ i.e., fE =fv  in ~t/". Let e 6 ~k~" represent  f~ for  each 
E ~ ~r In  part icular ,  (to, e) = to(E)  = 1 for  all E ~ ~r and  to ~ ~ .  I f  A ~ ~(~r 
and A c  E ~ ~r then f~\A=e--fA in ~ Observe  that  f~\A=fF\A for  any 
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opera t ions  E, F ~ ~r for  which A c E and A c F. Therefore ,  we call e --fA 
the negation offA and we write e --fA =f'A. Note  that  fA - - f ~  ---- 2fA -- e in ~V'. 

A par t ia l ly  o rdered  l inear  space is said to be Archimedean ordered if  
for  vectors  x, y with y -- 0 and  atx -< y for  all at > 0 implies  x ~ 0. A cone cr 
in a real, par t ia l ly  ordered ,  no rmed  space is called a normal cone p rov ided  
there exists a scalar  at > 0 such that  for  any  x, y ~ c~ with [Ix H -> 1 and [[y[[-> 1 
implies IIx+y][>_at. I f  q/ is the norm closed unit  ball,  ~ is no rma l  iff 
(a//+ ~ )  n ( q / -  ~ )  is b o u n d e d ;  further,  the normal i ty  of  cr is equivalent  to 
the existence o f  a topologica l ly  equivalent  n o r m  I[. [[1 such that  x - - -y  in 
implies [[X[[l~<]lyll 1. We call this norm [I. I ] l a  monotone norm. For  these 
equivalences  one can consult ,  for  instance (Kel ly  et hi., 1963, pp.  226, 227). 
We say the n o r m  ][. [] is additive when I1 x + y [1 = 1[ x 1[ + []y I[ for  x, y >- 0. Note  
that  an addi t ive no rm is mono tone :  

0 < - x < - y ~ y  - x  = z - - - 0 ~  [[y[] = Ilxl] + [[z[[- [[x]] 

3. Definition. For  e a c h / x  E ~ let 

Ilixll =sup{(IX, fA-- f'A): A c $ ( ~ ) }  

= sup{2C/X, fA)-(IX,  e): A e  $ ( ~ ) }  

4. Theorem. The funct ion II" II o f  Defini t ion 3 is a no rm on ?d/" and o/~ 
with this n o r m  is a Banach  space.  When  ~ ~ 6, ~ is Arch imedean  ordered,  
each to e f l  has unit  norm,  the cone ~ is closed in the weak  topo logy  
w(~ ~ )  and  thus n o r m  closed,  and the n o r m  is addit ive on ~ so cr is a 
no rma l  cone. 

Proof. For  e a c h / z  ~ ~ ]] tz [] - +Cix, e); hence,  []/z [[ - 0. Next ,  [[ IX I[ < co; 
for  each  A ~ $ ( ~ g ) ,  AcEe~IEAMX)I<--EEIIX(x)I<--M,~. Therefore ,  
I ( ~ , f ~ - A > I - < 2 M .  or  11~II-<2M.. I f  I I~ l l=0  then for  each x ~ X ,  0 =  
2C/z,f~)-Cix, e). Thus,  Cix, e ) = 2 i x ( x )  or tha t  Ix is constant  on X, which 
implies  Cix, e ) =  0 = Ix(x).  Clearly,  for  tz~,/z2 in ~ and  scalar  at, ] l~  + Ix=ll-< 
II~lll+llix=ll and  Ilat~,ll =latl l l ix,  II . When ~ # r  and t o ~ f l ,  0--<(to, fA)--<l 
implies  I[toll--<l and (to, e ) = l  implies 11,o11=1. Addit ivi ty  of  the no rm 
follows: /x~,/x2 ~ c~ implies  (Proposi t ion  2) there exist scalars at,/3-> 0 and  
to, v ~ fI  such that /z~ = atto and  IX2 =/3r, and  thus 

[[ ixa+iZ2ll=(at+/3)  atat /3 1, to+  = at +/3 = I1~111 + Ilix=ll +/3 at+j3 

I f  f~ ~ r A r c h i m e d e a n  order  follows directly: g,  t, ~ ~ z, >_ 0, and  at > 0 in 
R with a t / x -  < ~,. Then  for  each x e X ,  Catg, f~)<-Cv, f~) and C~,,f~)->0. Thus  
Cix, f i )  -< 0 or  tx - 0. ~ is w( ~/4/', Le) closed: Suppose  (g~)  is a net in ~ which 
converges  to /x~ ~ in the w(~ ~ )  topology.  Then  for  each A ~  ~(~r 
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0--< (/~, fa) -~ (/z, fa) and /z  ~ (C Since the normed topology is stronger than 
w ( ~ ,  &P), ~ is norm closed. 

Completeness: For each/x  ~ 7r I1~11---I(~, e)l = Ig~l and for each AE 
~(s~) ,  2 1 ( ~ , f A ) l - < 1 2 ( ~ , f A ) - ( ~ , e ) l + J ( ~ , e ) l  -<H~II+IK~I-<211~II;  hence, 
I (~ , fa ) l - -  I1~ H. Clearly, for/x, v ~ ~ and a in •, K,+~ = K~ + K~ and K,~ = 
aK~. Now, let (/x,) be a norm-Cauchy sequence in ~ and for simplicity, 
let K,  designate K , .  Then II~n--~mll-----Ign-K~[ implies (K,)  is Cauchy 
in R, and I(/~,- ~m, fa)l-----I1~,-~mll for each A~ ~(M) implies ((/z,,fa)) is 
also Cauchy in R. Therefore, define K = limit(K,) and define/z: ~(M).-> R 
by (IZ, fA)= limit(/x,,fA). Since each x ~ X implies {x} ~ ~(M), we can con- 
sider/x ~ R x. We show/x ~ off. and that (/.,_)-->/~ in norm. To establish (i) 
of Definition 1 for/~, let E be arbitrary in s / a n d  let A be an arbitrary finite 
event in E. Since (/x,) is norm Cauchy, there exists a constant M > 0 such 
that I1~.11--- M for all n. Since A is finite, there exists an index N such that 
n > N implies EAI~(x) -- ~.(X)[-< M. Thus 

I~A~ (x)l-< ~;Al/z (x) - / z ,  (x)l + I(Ix,,fA)l <- 2 M  

Since A was an arbitrary finite subset of  E, s 
To obtain (ii), choose E arbitrarily in sr and let e > 0 be given. There 

exists an integer N such that n, m >  N implies I 1 ~ - ~ 1 1  < e / 9  and, in 
particular, IKm - K,  I < e /9 ;  hence, IK, - K I-< e/9.  Fix m > N ;  then there 
exists a finite set A0 c E such that for any finite set A with A o c A c  E, 
I~,At.r fE\a)l<e/9. Therefore, with A o c A  and any 
n > N, ]~al&n(X)-g.[<_ Ir-a~(X)--~m(X)l+ [~'a[.,~m(X)- g~l+lgm -K.I--- 
H ~o - ~ II + I<~,T~\A>I + I1~o - ~ II < ~/3 .  Further, since Ao c A c E and a 
is finite, choose n > N and larger if necessary so that lY~A/Z (x) - / z ,  (x)l < e/3. 
Then, Ir .a~(x) -g l<_i:~a~(X)-~z . (x) l+lY~. (x) -g . l+lg . -g l<~.  
Thus, ?g~/z(x) = K and/x  ~ ~ .  

Lastly, (/x,)-->p. in norm. For each e > 0 ,  there exists N such that 
n, m > N  implies I ]~ . -~z , . l l<e /4  and, thus, for each event A~ ~(M), 
I(~o - ~, fa) l  <- I1~. - ~m II < ~/4. Then, for a fixed m > N, there exists a finite 
set A o c A  such that [~At~(X)--tZ,~(X)I<-I~AotX(X)--tZm(X)I+EAXAoII~(X) - 
/Zm(X) I and 5:A\AoI/X(X)--/Zm(X)[< e /4  (both /z, P'm ~ ~ Since Ao finite, 
we can choose n ~ N  sufficiently large that 

[~o~(x) - ~ . ( x ) l  + I ~ o ~ ( x )  - ~ ( x ) l -  ~ o l ~ ( x )  - ~ . ( x ) l  + I1~o - ~11  
<~/4+~/4=~/2. Hence, I(~-~m,A)l<3~/4; therefore, II~-~l[= 
sup{ l (~-~ ,2 fa-e) l :  A ~  ~ ( ~ ) } < 3 e .  �9 

We now state a theorem of Klee (Peressini, 1967, p. 194) which is of 
central importance here. 

5. Theorem. If  90 is an ordered Banach space with a closed cone 
cr and closed unit ball a//, then the Minkowski functional of the set 
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( q / n  ~ ) - ( ~ n  ~)  defines a norm on the subspace cs of  9 ~ and this 
new normed topology is complete and stronger than the original topology 
of  b ~ restricted to ~ - ~. When 0 ~ = ~ -  cs (i.e., cg is a generating cone) the 
two norms are topologically equivalent. 

Returning to our setting, let ~V = c~ _ cg in ~V and let ~ = con(f~ u -1~) 
where con(A) means convex hull of  A. Then ~ is radial at 0 in ~ circled, 
and convex; the Minkowski functional of  ~ defines a seminorm on ~V which 
is, in fact, a norm. This norm is commonly called the base-norm for 7/. I f  
a// is the original closed unit ball of  ~V, then ~ c ( ~ n  c ~ ) - ( 0 g n  cg) 
since q / n C ~ = c o n ( f ~ { 0 } ) .  Also, � 8 9 1 8 9  - 
( ~  n cg) c ~ .  Using Klee's theorem, ( q / n  c~) _ (ag ~ ~)  in ~ defines a unit 
ball for a complete norm on 7/" which is topologically equivalent to the base- 
norm. Thus, the base-normed topology on ~ is complete and stronger than 
the original normed topology of  ~ restricted to ~ 

6. Theorem. When f~ is nonempty the space ~V ~ ~ with the base-norm 
topology is a Banach space. Each positive linear functional on ~ is con- 
tinuous and since c~ is normal in ~V and ~ each continuous linear functional 
is the difference of positive and continuous linear functionals. Finally, if 
the cone c~ is generating in ~ the two normed topologies are equivalent. 

Proof The first statement is established in the paragraph above. Since 
the cone ~ is generating and closed in ~ (Peressini, 1967, Cor. 2.17c, p. 
88) or Kelly et aL (1963, p. 102) confirm that each positive linear functional 
on ~ is base-norm continuous. Since ~ (the continuous dual of  ~ is an 
order-unit space (Alfsen, 1971, p. 69), each continuous linear functional is 
the difference of positive continuous linear functionals. Normali ty of  c~ in 
74/" together with Theorem 23.5 of Kelly et al. (1963, p. 227) verifies that 
each continuous linear functional on ~V is the difference of positive and 
continuous linear functionals. Lastly, when q~ is generating, Klee's theorem 
yields the equivalence of  the topologies. �9 

We now present two finite examples which demonstrate how different 
the spaces ~ and ~ can be. The first example is called the bow tie 
quasimanual  (Foulis and Randall, 1972, p. 1674). ~/ will consist of  two 
operations {x, y, z} and {z, u, v} having only the point z in common. I f  we 
draw a graph of these points and connect with straight lines the elements 
which are pairwise orthogonal,  we obtain Figure 1. This orthogonality 
diagram illustrates clearly why we call this a bow tie ! We list the operational 
propositions II(~r of  this quasimanual in Figure 2. The lines in the diagram 
are determined by event inclusion, e.g., p(x) connected to p(x, z) since 
{x}c  {x, z}. Note that {x, y} op {u, v}, so they determine the same proposi- 
tion; similarly, e identifies p(x, y, z) and p(u, v, z) at the top. The convex 
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y( )v 

x( u 

Fig. 1. Bow tie orthogonality diagrams. 

set f~ of  weights is three-dimensional and its extreme points are the weights 
{~o~,u, tox, o, Wy, u, tOy, u, toz} where to.,~ assigns the value I to outcomes a,/3 and 
0 to the others and OJz(z)=l and 0 otherwise. The space ~V is four 
dimensional with P~ as the base of  its cone and 74/" = ~ The set of  frequency 
functionals ~ ( M )  is identified with the extreme points of the order interval 
[0, e] in ~ and are in one-to-one correspondence with the elements of  
II(M). This example suggests that we can identify II(M) with ~ ( M ) .  This 
is frequently true, but not always so as the next example indicates. 

e 

p(y,z) ~ r~,~J ..__ ~ ~ _ p(u,z) 

p(x), p(v) 

P ') 

Fig. 2. Bow tie operational logic. 
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z(  

x( 
Fig. 3. Orthogonality diagram. 

Let sr consist of  five operations: {x, y, z}, {u, v, w}, {x, u}, {y, v}, {z, w}. 
We again make the orthogonality diagram as shown in Figure 3. We now 
determine ~ and ~ Suppose ~ ~ ~ and let ~ (x )  = a and ~ (y )  =/3. Then 
IZ(Z) = K~ - (a  +/3), Iz(u) = K~, - a, tz(v) = K~, - / 3  and, therefore, tz(w) = 
a + / 3 - K ~ ;  but K~, = / z ( z ) + ~ ( w ) = 0 .  I f  tz were to be in fZ, this would 
imply a =/3 = 0, or that 1~ = ~b and ~ = {0}. Consider/z~ and/~2 defined on 
X: 

/z~(x) = /~ l (w)  = 1/2 

].-&l(Y) = ~,Zl(/.)) ~ - 0  

~(z)=~(u)=-l/2 

and 

~2(x)  = ~2(u)  = 0 

iz2(y) =/~2(w) = 1/2 

/zz(Z) =/z2(v)  = - 1 / 2  

Clearly, /~,/*2 are in ~ and i f / z ~  ~ with /~(x)=  a and t z ( y ) = f l  then 
/z = 2(a /~+/3~2) .  Further, I[/.~i][ = 1 for i =  1, 2. I f  we let / ,3 =/Zl- lZ2,  then 
we discover that +/Zl, +/z2, • are the extreme points of the hexagonal- 
shaped unit ball of  the two-dimensional space ~ Illustrated in Figure 4 
are the unit balls of  ~ and ?4/-, with labeled extreme points. Note that 
the frequency functionals of  outcomes are in the interior of  the unit ball 
of  ?4/'*. Let us now examine the operational logic II(M) for this quasimanual.  
Each single outcome element is logically equivalent to every other outcome: 
{y}op{u, w} through {v}, so {u}, {w} <_ {y} ; {u}op{z,y}  through {x}, so 
{y} -< {u}. Similarly, { w } -  {y}; hence {u} --- {y}-- {w}. Using the symmetry 
of the orthogonality diagram we obtain the other equivalences. Likewise, 
{x, y} ~- {x, z} - {y, z} --- {x} -= {y} - {z} . . . .  . Tediously continuing we find 
that I I (~r  {p(~b), p({x}), p({x, y, z})} and thus I I ( d )  is quite different 
from ~ (~ / ) .  Note that the elements of  ~ respect the relation op but not 
necessarily =-. An element of  ~ (provided it exists) respects both op and ---. 

The following was pointed out to the author by Professor David Foulis. 

Z Proposition. I f  ~ / i s  a quasimanual with a finite outcome set X and 
if for each x ~ X there exists at least one wx ~ ~ with wx(x) > 0, then ~ = ~ 
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-~3 

I _r) 

-~2 ~3 

Fig. 4(a). ~ ball. 

f - f{w, u 

f{u,v} - fw 

fy-f{x,z} 
' ]f{x,y}- fz 

fy " fw I 

] f v ~ f x  f{y,z} 

fv - f{u,w} 

Fig. 4(h). ~W*--Unit ball. 
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Proof For  each x c X, choose a scalar ~x such that 0 <  a~ < 1 and 
Exax = 1. Then  co = XxaxWx ~ fl. Let /z ~ ~ and since X is finite and o~ is 
positive on X, there exists ~ > 0 such that  cxw > Iz in off.. Hence,  aw - / z  c cr 
or there exist fl > O and v ~ 1 2 s u c h t h a t t z = o ~ w - / ~ v ~ o K .  �9 

Let us now explain a couple of  wel l -known examples in the formalism 
o f  this paper.  Let (S, ~)  be a measurable space and we define a quas imanual  
for (S, E) as follows: An  opera t ion E will be a countable  family (A, )  o f  
pairwise disjoint elements o f  Z such that  ~_J, An = S. The quas imanuat  M 
is the family o f  all such operat ions E and the set o f  outcomes X for  M is 
Y~. Notice that  classical events o f  (S, E) have been p romoted  to outcomes  
for this example.  Events for  M are now disjoint collections f rom E. The 
space off. is readily identified as the collection o f  all finite signed countab ly  
additive measures  on (S, E). F rom the wel l -known H a h n - J o r d a n  decomposi -  
t ion theorem (Dunfo rd  and Schwartz,  1958, p. 130) for  signed measures,  
we have that  OK= 74f, i.e., each finite signed measure is the difference o f  
positive measures.  The norm of  ~V and the norm of  OK are here in numerical  
agreement  and OK is a Banach lattice in its norm,  in fact, it is an L space 
(Kelly et al., 1963, p. 238). 

The second  example  is the s tandard mode l  for quan tum mechanics.  
Let H be a separable Hilbert  space and we define an operat ion here as a 
maximal  or thogonal  sequence o f  one-dimensional  project ions P (p2 = p = 
P*)  on H. The quas imanual  M is the collection o f  all such operat ions,  the 
outcomes  are the one-dimensional  projections,  and the events are all the 
project ions o n / 4 .  Using Gleason ' s  theorem (1957), we identify ~1 as the set 
o f  positive trace class operators  on H with unit trace and OK as all the 
self-adjoint trace class operators.  The base-norm on OK is the trace norm. 

The general  quest ion o f  when OK = ~ seems to be a very interesting 
one. For  example,  can OK be dense in ~ with the relative topo logy  of  7K 
and not  equal  ~ I f  OK is not  dense in ~ is the closure o f  OK complemented  
in ~V? I f  all positive linear functionals  are cont inuous  on ~ what  can be 
said about  ~ in ~g? M a n y  more  infinite interesting examples are needed 
here ! 

3. N O R M A L  W E I G H T S  A N D  W E A K  C O M P A C T N E S S  IN 
AND /r 

In  this section we define and characterize normal  functionals  and 
describe the weakly compac t  subsets of  74/'. Hencefor th ,  we unders tand that 
when we refer to 74r with its norm,  we mean  the original norm defined on 

(Definit ion 3) and, likewise, when we refer to OK with its norm,  we mean 
the base-norm.  When  g ~ 7/'* and /x  ~ OK** we will write the dual pairing o f  
g a n d / z  as {g, p.}. We observe that a subset B of  ~ is b o u n d e d  in ~V iff 
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there exists a constant  M > 0  such that sup ,~8 {I(IX, fA)[: A 6  ~ ( s4 )} - -M.  
This follows since the unit ball of  ~ is the polar  of  {fA--f'a: A~  ~(~/)}. 

Recall that  a net (g~: 7 ~ F) in a partially ordered  space is called 
monotone increasing if for  a ~/3 in F we have g~-< g~. The following 
proposi t ion is essentially Lemma 24.10 of  Kelly et al. (1963, p, 243). 

8. Proposition. A positive monotone  increasing net in ~ (respectively 
~ which is bounded  above converges in the norm topology (the w(~ ~ 
topology) to its least upper  bound.  

Proof Let (IX~: T ~ F )  be a monotone  increasing net in ~ c  ~ with 
~z~-< v~ ~ for  all y in F. Fix y in F; then the net {[[IX~-tx~H: a ~ F }  is 
mono tone  increasing and bounded  above in ~. For  y_< a -</3, additivity of  
the norm gives [[ixt~ -IX~]] + []IX~ -IX~][--][ixt3 -IX~[[~2[[ v[[--[[IX~ -IX~[t ~ 
[[IX~-IXv[[. Hence,  (/xv: y ~ F )  is norm Cauchy and since ~ is a Banach 
space with a closed cone there exists tx ~ ~ such that ( ixv)~ Ix in norm. 
Further,  Ix is the supremum of  (ix~: y ~ F )  in c~ since (ix~,f~)~ (ix, f~) for  
each x ~ X. 

Let (g~: y c F) be a monotone  increasing net of  positive functionals in 
~ which is bounded  above b y f c  ~ Define a funct ion g on c~ as follows: 
For  Ix ~ ~, let 0 -< (Ix, g) = lim~ (Ix, g~) _< (ix, f ) .  I f  Ix, p c ~ and a,/3 >_ 0 in ~, 
then (aix +/31, g) = a(ix, g) +/3(~,, g) follows directly. I f  Ix 6 ( -  c~), we define 
(ix, g) = - ( - i x ,  g). We extend g to 7/" in the obvious fashion: Let r / c  ~V; 
there exists Ix, p ~ c~ such that ~7 = Ix - p and we define (~7, g) = (Ix, g) - (~', g). 
Next  g is well defined on ~ for if in addit ion 77 =/2 - ~, /2, ~ ~ c~, then 
Ix + ~ =/2 + ~ in ~ ;  thus (Ix, g ) - ( u ,  g) = (/2, g ) - ( ~ ,  g). Clearly, g is l inear 
and for each to ~ 11, 0 _< (to, g) _< (to, f ) ~  [[ g ]1 _< [If[]. Since (to, g) = lim~ (to, g~) 
for  each to ~ ~ ,  g is the sup{g v: 7 ~ F} in ~ �9 

Following the definition of  normal  linear functionals for  w* algebras 
given in Sakai (1971, p. 28), we say that a positive linear funct ional  Ix ~ ~ 
is normal provided  for each monotone  increasing net (gv: Y ~ F) of  positive 
elements in ~ which is bounded  above, supr  (gv, Ix)= (supr (g~), Ix). An 
arbitrary element  in 7#** is called normal  provided it can be written as the 
difference of  positive normal  functionals.  

9. Proposition. When ~V is canonically embedded  in ~V**, 7/" is exactly 
the set of  normal  functionals on 7/'*. 

Proof By the second part  of  Proposi t ion 8, a monotone  increasing net 
(g~: y ~  F) of  positive elements in 7/'* which is bounded  above converges 
w* to its supremum in ~ ; so for  each Ix ~ cr supr  (Ix, g~) = (Ix, supr  (gv)).  
Since c~ is generating in ~ all the elements of  ~V are normal.  

Conversely,  suppose Ix is positive in ~ and normal.  Choose  E ~ 
and observe that  (fa:  A = E, A finite) is a monotone  increasing net in ~ 
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of  positive elements such that the w* limit (fa:  A c  E, A finite) = e~ 0//'*. 
Thus for each finite event A c  E: l ima Za(fx,/x) = (sup(ffl), tz)= (e,/z). I f  
we define tz(x) = (fx,/x) for each x ~ X, we see that tz is a positive function 
on X which is also an element of  c~ in ~ Since ~ is also a base-normed 
space, the elements of  ~ which are normal are in oF. �9 

We now proceed to show that among partially ordered Banach spaces 
the space ~ is the unique predual  of  ~ 

10. Lemma. Let At be a partially ordered Banach space with a closed 
generating cone K. Suppose K*  the dual cone in At* contains an order 
unit e. Then At* can be given an order-unit-norm and with this norm At* 
is linearly order homeomorphic  to At* with its original dual norm. The 
cone K in At has a closed base such that the base-norm on At is equivalent 
to the original norm of At and the order-unit dual of  At with this base-norm 
is At* with the order-unit-norm given by the unit e. 

Proof K * =  {~b ~ At*: 4~(K)---0} is a cone since K is generating in At 
and K*  is closed in the dual norm of At*. Let I = [ - e , e ] =  
{~b ~ At*: - e - <  ~b-  e}. Then I = ( - e + K * ) O ( e - K * ) ,  so I is norm closed, 
convex, circled, and radial at zero. Since At* = (..J,~~ 1 n/, the Baire category 
theorem yields the existence of a > 0 such that a ~ ~  I where a// is the 
original closed unit ball of  At. I f  m ~ At then m = ml - rn2, ml, rnz~ K and 
for each ~b~I:  I(m, ~b)]-< (ml, e)+(m2, e)<oo;  so I is w(At*, At) bounded. 
The uniform boundedness principal yields the existence of/3 > 0 such that 
/3q/~ L Therefore we can introduce the order-unit-norm on At* given by 
e and this order-unit-norm topology is linearly order equivalent to the 
original dual norm topology on At*. Let H = {m ~ At: (m, e ) =  1} and let 
B = H c~ K ;  B is closed and convex and is easily checked to be a base for 
K. Since B c Io, I is norm bounded in the original norm of  At, further, 
c o n ( B w - B )  is convex, circled, radial at zero, and w(At, At*) bounded. 
Thus we can introduce the base-norm on At given by B as a base for K. 
Let q/~ = e--6--fi(B w - B ) ,  where con means the closure in this new normed 
topology. Clearly, q/B c Io. I f  m ~ Io\6-6-fi(B u - B )  in At then there exists 
~b e a t *  such that 4~(m)> 1 and I~b(e--6--fi(B w - B ) ) l - 1 .  This is a standard 
separation theorem; see, for example, Kelly et al. (1963, 14.2, p. 118). So 
~b~I  and therefore its order-unit-norm [l~bIIe>l. At** can be given a 
base-normed topology with a w(At**, At*)-compact  base /~  for which B is 
w* dense in /~ (Alfsen, 1971, p. 78); in fact, B is the w(At**, At*) compac- 
tification of  B embedded in At**. But [[ ~b [1 e = sup{I(~b, ~)[: qb ~/~ in At**} > 1. 
Thus there exists ~o~ /~  with I(~b, qbo)]> 1 and there also exists a net (ms) 
in B such that ( m ~ ) ~  ~o in w(At**, At*) topology. However, I(m~, ~b) I-< 1 
for all a, so (~b, qbo)--< 1. Thus no such m~Io\E-6- f i (Bw-B) can exist and 
we have Io =U6- f i (Bw-B)  in At. �9 
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The next theorem shows that ~ with the base-norm is linearly order 
homeomorphic to any partially ordered Banach space with a closed generat- 
ing cone which acts as a predual of ~F*. This is very similar to the result 
for von Neurnann algebras as given in Sakai (1971, p. 30). It would be 
interesting if the hypothesis of the partial order on the predual could be 
relaxed, but this author sees no apparent way to do this. 

11. Theorem. Let ~ / b e  a partially ordered Banach space with a closed 
generating cone K and suppose J/* with its dual cone K* is linearly order 
homeomorphic with T'*. Then J / i s  linearly order homeomorphic to 7/'. 

Proof. For simplicity, we identify J/* with ~* and K* with the cone 
of ~F*. Then K* contains the order-unit e of our set Lr of frequency 
functionals. The previous lemma asserts that ~ can be equivalently renor- 
med as a base-normed space with the same cone and norm closed unit ball 
~=c-b--f f (Bu-B) .  Since ~176 is w ( 7 / * , ~ )  compact and I is also 
w(~F *, ~ )  compact (Banach-Alaoglu theorem), both w* topologies must 
be equivalent on /. If  E ~ ~ then the net {)CA: A c E, A finite} converges 
w(~F *, ~ )  to e ~ I and so must also converge w(~*,  ~ )  to e. Thus for each 
m ~ K ,  limA(m, fa)=(m, e) and m must be in 7/. Since K generates J/, 
j / c  ~. We may now consider J /  as a subspace of ~**. Since w(~F *, ~F) 
and w(~*,  A/() agree on /, each member of  ~ when restricted to I is 
w(~*,  ~ )  continuous. So by Grothendieck's completeness theorem (Kelly 
et al., 1963, p. 145) or (Ringrose, (iv), p. 315), each member of o//. must be 
in the norm completion of J / i n  ~F**. Since d/ is already a Banach space, 
~ c  J/. Thus ~ = ~ and J / i n  its original topology is linearly order homeo- 
morphic to ~F in the base-normed topology. �9 

We ask the reader to recall the following lemma concerning weak 
sequential convergence in the Banach space ll(E) of all absolutely conver- 
gent real-valued sequences on the set E. For a proof  see, for instance, 
Banach (1932, p. 137) or Cook (1978b, p. 277). The technique of proof  is 
sometimes referred to as the sliding bump. 

12. Lemma. Let  F c  lo~(E)= I1(E)* be the subspace of functions on 
E each with finite range. Then a sequence (/~,) in l l(E) converges 
w(ll(E), F) to /z ~ l l(E) iff (~n) converges to /x  in norm. 

The following proposition and theorem were established in Cook (1978b) 
with considerable additional hypotheses. With the results of the previous 
section, they are obtained far more easily. Independently, Dvure6enskij 
(1978, p. 292) arrived at roughly the same results; however, the proof  given 
here using Lemma 12 is entirely different. These results are our interpretation 
of the well-known Hahn-Vitali-Saks theorem of classical measure theory 
(Dunford and Schwartz, 1958, pp. 158-160) for quasimanuals of operations. 
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13. Theorem. Suppose (IX,) is a bounded sequence in ?4/" and suppose 
lira, (ix,,fa) = IX(A) exists for each A~ g(ar Then IX ~ 7g'. 

Proof Without loss, assume [1/zn II -< 1 for all n. We can consider IX: X 
R, since Ix(x)=l im,( ix , , fx)  for each x ~ X .  We next observe that Ix is 
absolutely summable on each operation. Choose any E c d and any finite 
event A c E. Let e > 0 be given. Then there exists n such that Is 
[EAJI~ (X) -- ].L n (X)["[- [(].Z,, fA)l < E "4- 1. Thus [~A]~ ( X ) [ ~  1 for all finite events A 
in E and, therefore, E~]IX(x)[-< 2. Next, IX assigns the same value to each 
operation: For each E c ~ ,  I x ( E ) = l i m ,  (ix.,fz). Lastly, we must show 
{s  A c  E, A finite} converges to IX(E). Fix E ~  and let each Ix, 
and IX restricted to E be denoted, respectively, vn and v. Then v~, ~, ~ ll(E) 
and consider the span {fA: A c  E}=  FE c lo~(E). Since lim,(~',,fA)=(~',fA) 
for each A c E, the lemma guarantees that [] ~, .-  ~,l] ~ 0 in II(E). Thus for 
e > 0, we can choose N such that n, rn > N, EElv~(x) -  vm(x)[ < e/3.  Fix 
n > N ;  there exists a finite event Ao c E such that for any finite event 
ADAo,  []~AVn(X)--Pn(E)I=I(v.,fE\A)[<e/3. For any m > N ,  [~'m(E)- 
~allm(X)[ ~ lure(E) - v,(E)] + [I,,(E) . ~AI.Pn(X)[ -~ [EAPn(X ) -- EAI~rn(X)[ 
<- EEl v~(x) -- v,(x)[ + ](v,,fE\A)I +EF[P,(X) -- Um(X)[ < e. Holding a = A0 
fixed, lim~lvm(E)--~a~', ,(X)[ = I~'(E)--~AV(X)[----- e. Hence, IX ~ ~ .  �9 

14. Theorem. If  B is a bounded set in ~/r then the weak closure of B 
is w(~ ~ compact iff each sequence (IX,) in B contains a subsequence 
0-%) such that limk(ix,~,fA) exists for each A~ g(ar 

Proof ~W is a Banach space, so if the closure of B is w(~W, ?V*) 
compact, by Eberlein's theorem (Schaefer, 1966, p. 185) the closure of B 
is weakly sequentially compact and the condition follows. 

Conversely, it is sufficient to prove each sequence in B has a weakly 
convergent subsequence. If  (IX,) is in B then by hypothesis we have a 
subsequence (IX,~) such that limk (IX,~,fA)=IX (A) exists for each A ~ g(A) ;  
thus by Theorem 13, IX c off.. Since B is weakly bounded in ~ it is weakly 
precompact (Schaefer, 1966, Cor. 2, p. 144); thus, if ~,6~g/'** is a 
w(~ **, ~ limit of  (IX,~) in 7g'**, (fA, U)=(IX, fA) for each A~ g(a4). 
Hence, z,=ix in ~/g and it follows that /z is the w(~ 7,V*) limit of 
(~,~). �9 

15. Corollary. The space ~V is w(~ ~ sequentially complete. 

Proof If  (IX,) is a weakly Cauchy sequence then it is bounded and for 
each A~ g ( d ) ,  l im,(ix, ,fA)= Ix(A) exists. Theorem 14 guarantees Ix is the 
weak limit of (Ix,) in ?g'. �9 

16. Proposition. Each order interval in ?4/" or ~ is weakly compact. 

Proof Since the cone cg (in ~ or ~ )  is normal (Kelly et al., 1963, 
23.7, p. 228), order intervals are bounded and since cg is closed, order 
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intervals are closed. Without loss, we can consider an interval [0, u] c ~. 
Embed [0, u] in ~F** and since its w(~'**, ~V*) closure is weakly compact,  
let ~x ~ ~** be a w(~**,  ~V*)-accumulation point. We show tx ~ o//; to this 
end there exists a net (tx~) in [0, 9] such that (tx~) ~ tx  in the w(~V **, ~*)  
topology. I f  E ~ ~ / a n d  A is any event in E, then l im~(#~ , fa )=( fa ,  IX). For 
e > 0 there exists a finite event A0 c E such that for any finite event A with 
Aoc A c  E and all a :  O~(IJ, a, fE \A )~ .E \AP(X)<E~O~- ( fE \A ,  JA,)~E. 
Since (e, tx)=(fa, lX)+(f~\a, lX) for each finite event A c E ,  the last 
inequality implies the net {Ea/X(x); A c  E, A finite} converges to (e, ix). 
Thus/x  ~ 7/" and [0, ~,] is w(~ ~*)  compact  in 7/'. �9 

In classical measure theory, Theorem 13 is proved by turning the 
measurable space into a complete metric and using the Baire category 
theorem in a very clever way. Since our ~(s~) does not form a distributive 
lattice, this method fails at the outset. Further, the proof  given here does 
not depend on already knowing the result in the classical case. Theorem 
14 for LI(S, ~, Ix) is essentially Theorems 7, 9, and Lemma 8 of Dunford 
and Schwartz (1958, pp. 291-293). Corollary 15 is Theorem 6 of the same 
reference on p. 290 and also can be found in Day (1962, Thm. 4, p. 108) 
for any abstract L space. Our Proposition 16 is stated as Theorem 4 of Day 
(1962, p. 108) for abstract L spaces. On p. 309 of Dunford and Schwartz 
(1958), Theorem 8, called Nikodym's boundedness theorem, states that a 
set M of countably additive measures on a measurable space (S, Z) for 
which there exists N ( A ) <  co for each A in E and all tx c M such that 
I~(a)]-< N(A)  implies there exists a number  N < oo such that I/x(a)[ _< N 
for all A in E and all tx in M. The proof  is surprisingly complicated and 
depends on making equivalence classes of (S, ~) into a complete metric 
space and using the Baire category theorem. This method depends on the 
distributivity of  y and this is not generally obtained in our ~(sq) and so 
was carefully avoided in Theorem 13. This suggests a similar theorem and 
proof  might exist for boundedness in our space ~/g'. This could be a very 
interesting theorem. 

4. THE ULTRAWEAK T O P O L O G Y  AND COMPACTNESS 

Let ~F = {fA: A ~ ~(~) ,  A finite}c ~ designate the set of  frequency 
functionals of  finite events and let o~ designate the linear span of &~ F in ~*. 
We call the w( ~, ~-) topology the ultraweak topology for ~F in analogy with 
the ultraweak topology for the trace class operators on Hilbert space [see, 
for example, Ringrose (1972, p. 320)]. Observe that the w(~F, o ~)  topology 
is the same as the w(~,  ~ f )  topology and the ultraweak topology is the 
weakest linear topology on ~V which makes each fx continuous for each x c X. 
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Let us now give some physical intuition as to why one should study 
this linear topology. The finite events are the only events which a real 
experimenter in a finite amount of time could observe. Further, when trying 
to calculate the state of a physical system one is confronted with finitely 
many inaccuracies of measurement. Therefore, a reasonable neighborhood 
of  an idealized state to ~ 12 should consist of all physical states u such that 
l u(xi) - to(xi)[ < ei, where e~ > 0, i = 1, 2 , . . . ,  n are errors and {xl, x2, �9 �9  xn} 
is a finite event from one of our idealized experiments E c ~r The collection 
of all such neighborhoods on ~F generates the ultraweak topology. These 
ideas have been adapted from those given by Gunson (1967, p. 269). The 
reader might ask: Why not use all the events? Would this not give better 
results? Perhaps! But the mathematics does not work out so well. We return 
to this point in a moment. 

Most physicists would probably agree that the set f~ should contain 
pure states, i.e., extreme points. Usually one guarantees their existence by 
using a compactness condition together with the Krein-Milman theorem. 
Since 12 consists of completely additive weights, most quantum mechanical 
models do not have 12 compact. It is frequently suggested (Gunson, 1967, 
p. 269, Ludwig, 1983, p. 57) that 12 be completed in a larger space in order 
to make it compact. Unfortunately for this presentation, if one does this, 
12 will pick up some noncompletely additive states and thus will no longer 
be contained in our basic space ~. In the fundamental example of the trace 
class operators on Hilbert space, none of this completion business is 
necessary, in fact, it is highly undesirable as the following propositions and 
discussion will show. We now need the following definition: A collection 
A of weights (c12) is called unital provided for each A ~ ~ ( ~ ) ,  there exists 
at least one to c A such that (to, fA)= 1, equivalently, for each x~ X, there 
exists at least one tox ~ A such that (tox, f~) = 1. 

17. Proposition. If  there exists a subset A c 12 which is ultraweakly 
compact and unital, then each operation E c sr is finite. 

Proof Suppose B = {Xa, x2,.. .} is a countably infinite event with B c 
E ~ ~. For each finite event A c B, there exists toA E A such that t o A ( A )  = 0 
and toA(B\A) = 1. By hypothesis the net (toA: A c  E, A finite) contains an 
ultraweakly convergent subnet with limit to ~ A. Without loss, we can con- 
sider this subnet to be our original net (toA: A c E, A finite). For each 
x c E \ B  and all finite A c B, WA(X) = 0 and thus to (x) = 0. Further, for each 
finite A o = E  and finite A with A o c A c E ,  toA(A0)=0. Consequently, 
to(A0)--0 and since to is completely additive on E, to(E) = 0; but to ~ A, so 
to(E)--  1. Thus no such B exists and each operation in ~r is finite. �9 

If  12 is w(Tf, O%) compact then q / = c o n ( 1 2 u - 1 2 )  is also compact. 
However, a//can be w(7/', o%) compact and 12 not: e.g., it is easy to see that 
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when H is separable Hilbert space, fl being the positive, unit trace operators 
on H is not w(T', o~) compact,  but the unit ball of  the trace class is 
ultraweakly compact.  Recall the trace class is the dual of the space of 
compact operators, which in turn, is the operator norm completion of the 
finite-dimensional operators. Let us demonstrate that f~ is not ultraweakly 
compact. I f  (ek) k = 1, 2 , . . .  is an orthonormal sequence in H, then each 
one-dimensional projection Wk: H ~  H given by Wk(X) = (X, ek)ek where 
( . , . )  is the inner product of H, is in 12. Now (Wk)--> 0 ultra weakly from 
the lemma on Fourier coefficients in H. 

Notice that f~ will have extreme points if the unit ball ~//= con(l) u - f l )  
of  ~ is compact  for some linear topology since the extreme points of ~ lie 
in +12. From the quasimanual point of  view the weakest linear topology 
which could make 0// compact  would be that given by the frequency 
functionals of  outcomes of the underlying quasimanual J .  I f  one used more 
frequency functionals (a stronger topology) one would still obtain ultraweak 
compactness. In this light we interpret the following well-known theorem 
concerning Banach dual spaces; see, e.g., Ringrose (1972, Sections 1, 2). 
is w(~F, o~) compact  iff ~ is norm and order isometric with the space which 
is dual to the norm completion of o~ in o//... When ~ is ultraweakly compact 
we have a very close analogy with the type-I von Neumann algebra. The 
following proposition emphasizes the primality of  the finite events in a 
quasimanual when 0// is ultraweakly compact. 

18. Proposition. I f  M is a quasimanual, A is a unital set of states in fl, 
and the unit ball q/ of  ~ is w(7/', o~) compact,  then a finite event is not 
operationally perspective to an infinite event. 

Proof Suppose on the contrary that A op B, A is a finite event, and B 
is an infinite event. Then there exists an event C which is an operational 
complement  to both A and B. I f  D represents any finite event in B, then 
there exists WD C A such that (WD, fB\D)= 1. Thus, (o)D,f,)= 0. I f  @ rep- 
resents the family of all finite subsets of B directed by inclusion, then the 
net (WD: D c @) contains an ultraweakly convergent subnet which has limit 
/x ~ ~ c~ cg. Note that 0//r~ ~ is also compact  since it is easy to see that 
is w(~,  ~:) closed. Without loss we can assume the convergent subnet is 
(rOD: D e  9) .  Now fB ~fB\D in ~ and (tOD, fB\D) = I~(WD,  fB)= 1 for all 
D e  9. Since A opB and each WD~Y~(tOD, fA) = 1. Consequently, with 
fA6 ~L#y~(tX, fA) = 1 and thus (/x, fB) = 1. NOW fix b ~ B and observe for any 
D in @ with {b} c D that (rOD, fb) = 0. Since fb C ~y, (/~, fb) = 0. But,/x C 0//c~ c~ 
so (iz, fB)=l~(B)=E,]z(b)=O. �9 

The following example illustrates the limited conclusions one can draw 
from these previous propositions. Let X = { a 0 ,  al, a2, . . .}  and let M =  
{{ao, al}, {ao, a2, a3}, {ao, a4, as, a6},. . .}.  Since X is infinite, we construct 
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Fig. 5. Partial orthogonality diagram. 

a partial orthogonality diagram to illustrate this quasimanual (Figure 5). 
Then {al} op {a0}, {al} op {a:, a3} , {al} op {a4, as, a6} , . . . .  One can easily 
check that f~ is unital and ultraweakly compact  for this quasimanual.  
Observe that each operation in ~ is finite, but there is no finite bound on 
the cardinality of  the events op to {al}. Further, p({al}) is not an atom in 
II(M). Since p( th)<p({a2}) ,  p ({a4}) , . . .<p ({a l} )  in H(M)- - see  Randall  
and Foulis (1983) for further details concerning the order properties of  
I I ( J )  for any quasimanual  M. 

In Cook (1978a, Cor. 6) and Gunson (1967, p. 270) weak compactness 
of  the base of  the cone was used to prove the space of states is a Banach 
space. I f  ~ is to have a compact,  unital base and for each x ~ X, fx is to 
be continuous for this topology, then Proposition 17 states that one must 
only have operations which are finite. Independently,  G. T. Riittimann 
(1981, Theorem 4.2) has come to a similar conclusion. Thus, if one is going 
to use 7f as the predual of  ~*  (the space generated by the frequency 
functionals), then the insistence on a compact  base seems not to be a good 
one. I f  a major  reason to have a compact  base is to prove ~ is norm 
complete, this is not necessary either, since norm completeness of  ~r was 
obtained in Theorem 6 without this assumption. One last closing remark is 
in order. I f  M has at least one infinite operation then 7f** always contains 
finitely additive states which are not completely additive. I f  this were not 
so, f~ would be w(~,  ~*)  compact  and thus w(~,  i f)  compact.  

::, 
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A C K N O W L E D G M E N T S  

T h e  a u t h o r  w o u l d  l ike  to  a c k n o w l e d g e  t h e  c o n t i n u i n g  h e l p  a n d  c r i t i ca l  

d i s c u s s i o n s  o n  t h i s  w o r k  o f  h i s  c o l l e a g u e s  P r o f e s s o r s  D a v i d  F o u l i s  a n d  

C h a r l e s  R a n d a l l .  T h e i r  s u g g e s t i o n s  a n d  i n s i t e f u l  c o n t r i b u t i o n s  w e r e  

i n v a l u a b l e .  
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